Variability of inorganic and organic phosphorus turnover rates in the coastal ocean

Claudia R. Benitez-Nelson & Ken O. Buesseler

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

Phosphorus is an essential nutrient in pelagic marine ecosystems. Phosphorus cycling in the upper ocean is, however, poorly understood, and few studies have directly investigated the biological utilization of this essential element1,2. Here, we have determined in situ phosphorus-turnover rates in a coastal marine environment by measuring the activities of two cosmogenic radionuclides (32P and 33P), with half lives of 14.3 and 25.3 days, respectively, in dissolved inorganic, dissolved organic and total particulate phosphorus pools over a seasonal cycle. Phosphorus turnover rates within dissolved and particulate pools are rapid and vary over seasonal timescales, suggesting that low phosphorus concentrations can support relatively high primary production. Furthermore, picoplankton, such as bacteria, appear preferentially to utilize certain dissolved organic phosphorus compounds to obtain other associated nutrients, such as carbon and nitrogen. It seems that the significance of the roles of both dissolved inorganic and organic phosphorus in supporting primary production—and, hence, CO2 uptake and particulate organic carbon export—has been hitherto underestimated.

The radionuclides 32P and 33P are produced primarily by cosmic ray interactions with atmospheric argon and enter the oceans predominantly in rain3,4. If the ratio of 32P/33P in rain is known, then one can determine the relative ‘age’ of cosmonogentic phosphorus, P, by measuring the 32P/33P ratio in various biological pools. High 32P/33P ratios indicate an older P pool. The inventories of 32P and 33P in the ocean are quite low, ranging from just tens to hundreds of disintegrations per minute per square metre (d.p.m. m−2). Thus, 32P and 33P measurements require several thousand litres of sea water and extensive purification from other β- emitters. Previous investigations which sought to utilize these isotopes were hampered by a lack of known input fluxes, possible contamination and the inability to measure the low-energy β-emitter 33P especially in coastal environments with high P concentrations5–10. This study is, to our knowledge, the first to constrain the 32P and 33P input flux and to simultaneously measure both these isotopes in various dissolved inorganic, organic and particulate pools.

Sampling was conducted in Wilkinson basin in the Gulf of Maine (42° 29.41’ N, 69° 45.02’ W) during four cruises in March, April, July and August 1997. This highly productive region supports one of the largest fisheries in North America11. Surface and deep particulate and total dissolved phosphorus (TDP) samples were collected by passing 4,000–6,000 l of sea water sequentially through a series of 10, 1.0 and 0.2 μm cartridge pre-ilters followed by cartridges packed with iron-imregnated polypolyene filters. These filters have been demonstrated to collect TDP with close to 100% efficiency12. Separate surface samples were collected for soluble reactive phosphorus (SRP), as defined by the molybdenum blue method13, using acrilan filters and the technique developed by Lee et al.14. Plankton tows (nominally >100 μm) were collected from various depths and sieved through a 335-μm screen to collect different size classes. All samples were extensively purified to remove all other β-emitting radionuclides and counted using low-level liquid scintillation15. In March and April, deep-water P samples were taken just above the base of the mixed layer (defined by a change in density ≥ 0.125 kg m−3), whereas in July and August, deep-water samples were taken below both the mixed layer and the deep chlorophyll maximum.

The ratio of 32P/33P measured in rain at Portsmouth, NH and Woods Hole, MA was flux weighted over a 35 ± 3-day period before the April, July and August cruises and over a 14-day period before the March cruise. 32P/33P ratios averaged 0.82 ± 0.07 (Fig. 1, Table 1). Thus, any ratio higher than this value must be due to radioactive decay. A non-continuous model can be used to determine the relative age of phosphorus in any particular reservoir: τp = [ln(R0/Rt)]/λ2 − λ1, where τp is the age of phosphorus in the product material, R0 and Rt are the 32P/33P ratio found in the product and source material, respectively, and λ2 and λ3 are the radioactive decay constants1. Using this model, phosphorus ages are resolved on timescales ranging from 1 to 100 days. In general, age estimates will increase with increasing 32P/33P ratios as P activities decrease over time.

In March, April and July, ratios of 32P/33P in particulate matter were similar between surface and deep waters, indicating rapid transport of sinking particulate material from the euphotic zone to depth (Fig. 1). In August, the activities in all particulate samples retrieved from deep waters were below detection, indicating that the source of sinking particulates had decreased. 32P/33P ratios in total dissolved and small particulate (<100 μm) surface pools measured during March, April and August were similar to those found in rain.

Supplementary information is available on Nature's World Wide Web site (http://www.nature.com) or as paper copy from the London editorial office of Nature.

Acknowledgements. We thank R. Hulst for the 2D ROESY experiments, B. Fokkens and N. M. M. Nibbering for the MALDI-TOF measurements, and E. W. Meijer for providing the use of the CD Foundation (STW) of the Netherlands Organization for Scientific Research (NWO).

Correspondence and requests for materials should be addressed to C.R.B.-N. (e-mail: smc@ct.uwente.nl).
This indicates rapid P turnover rates on timescales of less than a day to just over a week (Figs 1 and 2a, b, and Supplementary Information). In July, however, the age of TDP increased to two weeks (Fig. 2a).

In July and August, the separation of TDP and SRP allowed for the estimation of the activity of both ^{32}P and ^{33}P in dissolved organic phosphorus DOP (= TDP − SRP). In contrast to previous investigations, these results demonstrate the in situ temporal variability in the ^{32}P and ^{33}P activity and the P residence time of DOP. Surface DOP concentrations increased from a low of 0.04 µM in April to 0.20 µM in July, whereas SRP concentrations decreased from 0.56 to 0.26 µM. In July, the relative age of the DOP pool was 28 days and the activity of ^{32}P and ^{33}P in the DOP pool was close to 50% of the measured ^{32}P and ^{33}P TDP activity (Fig. 2a). In contrast, the relative fraction of ^{32}P and ^{33}P activity in the August DOP pool was over a factor of two lower, whereas DOP concentrations decreased by less than 5%. The measured decrease in August DOP activity, however, could not be accounted for by radioactive decay alone. This implies that there was preferential remineralization of a small fraction of DOP compounds that were younger than the bulk DOP pool. The remaining DOP fraction must cycle over timescales longer than 100 days.

Concurrent with the decrease in DOP activity was an increase by a factor of five in both ^{32}P and ^{33}P activities within the picoplankton (0.2–1.0 µm) size class. Assuming that all the P uptake of the 0.2–1.0-µm-size class was derived from the TDP pool, a picoplankton P turnover rate of approximately two days can be determined for August (Fig. 2b). This is comparable to a bacterial P residence time of several hours to several days found by previous investigations using incubation techniques. The relatively high ^{32}P and ^{33}P activities and low $^{33}\text{P} / ^{32}\text{P}$ ratio found within the August picoplankton (0.2–1.0 µm) size class also suggests that these organisms were consuming SRP and possibly small particulate P (1.0–10 µm and 10–102 µm). Although low in ^{32}P and ^{33}P activity, rapid remineralization of the 0.1–10-µm and 10–102-µm P pools could support a significant fraction of the bacterial P uptake. Whereas previous studies have shown SRP and particulate P uptake in incubation experiments, our results demonstrate the rapidity of these processes in the water column.

During uptake, P is incorporated into a wide variety of biological components. However, the rate of incorporation and the distribution of this uptake will vary depending on the environment and growth cycle of the organism. Preferential remineralization of DOP compounds with relatively high ^{32}P and ^{33}P activities suggest that these compounds were more bioavailable than the bulk DOP pool. Previous research has indicated that the proportion of phosphates within the high molecular weight fraction (1–100 nm) of DOP was significantly higher than that found in natural assemblages of plankton. Thus, it was hypothesized that the remineralization of other DOP compounds was preferred. Several studies have found that bacteria can readily hydrolyse organic phosphorus compounds, such as monophosphate esters and nucleotides, through enzymatic processes. Our results suggest that bacteria are rapidly remineralizing these compound classes. If correct, our results also imply that phytoplankton rapidly incorporate P from outside the cell into nucleotides and monophosphate esters. These compounds are then released through grazing or virolytic processes, thereby providing a mechanism in which more bioavailable DOP compounds can contain higher ^{32}P and ^{33}P activities than the bulk DOP pool. Regardless, these results provide direct evidence that there is a more bioavailable pool of DOP.

The observation that SRP is also being consumed indicates that the picoplankton-size organisms must be expending energy in the hydrolysis of DOP for reasons other than P limitation. Dissolved organic carbon concentrations in surface waters decreased from 78.2 µM in July to 64.5 µM in August, while combined nitrate and nitrite levels averaged 0.1 µM. Thus, we hypothesize that bacteria and picoplankton were hydrolysing specific DOP compounds for their carbon (C) and possibly nitrogen (N) content, presumably as structural biosynthetic precursors.

These results have several important implications concerning the P cycle in the open ocean. Our results demonstrate that the

Table 1 ^{32}P and ^{33}P inventories from rain and seawater measurements

<table>
<thead>
<tr>
<th>Sample</th>
<th>^{32}P inventory expected from measured rain input (d.p.m. m$^{-2}$)</th>
<th>^{33}P inventory expected from measured rain input (d.p.m. m$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NH*</td>
<td>MA†</td>
</tr>
<tr>
<td>March</td>
<td>73</td>
<td>168</td>
</tr>
<tr>
<td>April</td>
<td>72</td>
<td>272</td>
</tr>
<tr>
<td>July</td>
<td>122</td>
<td>54</td>
</tr>
<tr>
<td>August</td>
<td>133</td>
<td>66</td>
</tr>
</tbody>
</table>

* NH represents Portsmouth, New Hampshire (43°04' N, 70°42' W).
† MA represents Woods Hole, Massachusetts (41°32' N, 70°39' W).
‡ Over upper 50 m at Wilkinson basin.

Figure 1 $^{32}\text{P} / ^{33}\text{P}$ ratios in rain and sea water. Seawater samples were obtained during March, April, July and August 1997 cruises in the Gulf of Maine. With the exception of the March and April plankton tows, samples were taken at the specific depth listed along the y-axis. Vertical separation is for clarity only. In March and April, plankton tows were integrated over the depth of the mixed layer and are shown at the midpoint of depth collection.
residence times of SRP and DOP are distinct from one another and vary seasonally, suggesting that these two pools play distinct roles in biological production. Even at low concentrations, rapid turnover of SRP can support a much greater fraction of primary production than previously thought. This has significant implications for those studies that assume P limitation based only on P concentration (relative to N). In addition, bacteria and picoplankton can obtain not only additional P, but also C and N through the breakdown of DOP. The bioavailable DOP pool, however, represents a small fraction of bulk DOP within coastal environments. Nonetheless, picoplankton in the presence of DOP may substantially increase primary production in the open ocean.

In contrast to the 0.2–1.0 µm size class, 32P and 33P activities in the 1–10 µm and 10–102 µm size fractions had decreased by more than 50% between July and August, and the average residence time increased from less than two days to just over a week (Fig. 2b). This implies that both autotrophic and heterotrophic P consumption had dropped. Given the available SRP concentrations, a decrease in phytoplankton activity suggests limitation by trace metals and/or other nutrients. The reduction in heterotrophic activity, however, indicates that microzooplankton, such as ciliates, were inefficient grazers of picoplankton. This is in direct contrast to laboratory

studies which have found that microflagellate grazing plays a dominant role in both trace-metal and nutrient recycling under oligotrophic conditions22,23. Furthermore, although picoplankton can increase primary production, an increase in secondary production and particulate export does not always result.

Particulate export fluxes over the upper 50 m were determined for 32P and 33P assuming steady state and negligible advection and diffusion, as well as considering the difference between the average rain flux at Woods Hole (Massachusetts) and Portsmouth (New Hampshire) and the measured seawater inventory (Table 1). Although 32P/33P ratios did not vary significantly between the two sites, fluxes varied by as much as a factor of four. These large flux variations are most likely to be due to differences in the source of the scavenged airmass3. Because rainfall was not measured directly at our seawater sampling site, an average value between the two rain stations was used to determine the input of 32P and 33P. In March, the Portsmouth data were limited and suffered from rain-gauge inaccuracies associated with large snowfall7. As a result, 32P and 33P export fluxes could not be determined for the March cruise.

The flux of particulate organic carbon (POC) was found by multiplying the calculated radionuclide fluxes by the ratio of 32P (and 33P) to carbon on particulates (≥1 µm). Using an average 32P and 33P rain input gave POC fluxes which agreed well with those determined using the more commonly utilized22 radioisotope POC flux tracer, 234Th (Fig. 2c). Using an annual Gulf of Maine primary production estimate of 66.2 mmol C m⁻² d⁻¹ (from 1978–1980)5 allows the calculation of an average ‘export’ ratio of 0.52. Given the low activities of 32P and 33P observed in the 1–10 µm and 10–102 µm size fractions, it is likely that the large increase in carbon export observed during the late summer is the result of zooplankton growth in July and mortality in August (Fig. 2c). This further indicates a lag period between changes in community structure and organic carbon export.

32P and 33P activities within the larger microplanktonic pools (>102 µm) were an order of magnitude lower than those found in the smaller particles (<102 µm). In March and April, both the 102–335 µm and the >335-µm size classes were dominated by phytoplankton and had turnover rates which ranged from a day to as long as two weeks. In July and August, residence times of particles in the 102–335-µm class were longer, ranging from two to four weeks (mixed assemblages of copepods and dinoflagellates). The >335-µm size class, however, had residence times as long as seven weeks (dominated by mature copepods). These P residence time estimates are similar to the 19 days found by laboratory studies which fed copepods with 32P-labelled phytoplankton23 and to the 30–80 day range found in plankton towings in situ measurements of 32P and 33P at Bermuda and off the coast of Southern California1,8,10. However, our study is one of the first to show a seasonal relationship between P ages and trophic level. Our results provide additional evidence that increasing primary production within the Gulf of Maine does not immediately result in an increase in macrozooplankton P uptake.

The measurement of 32P and 33P within dissolved and particulate pools has provided much-needed insight into the temporal variability of P cycling in the upper ocean. Further measurements of these isotopes, especially in regimes that appear to be P limited, will help to provide new constraints on models that seek to emulate primary production and particulate export. It is already clear that 32P and 33P have the unique ability to pinpoint the most biologically ‘active’ pools of dissolved inorganic, organic and particulate P pools.

Received 5 June 1998; accepted 2 February 1999.

Large-scale impoverishment of Amazonian forests by logging and fire

Daniel C. Nepstad, Aldalberto Verissimo, Ana Alencar, Carlos Nobre, Erlielthon Lima, Paulo Lefebvre, Peter Schlesinger, Christopher Potter, Paulo Moutinho, Elsa Mendoza, Mark Cochrane & Vanessa Brooks

* Woods Hole Research Center, PO Box 296, Woods Hole, Massachusetts 02543, USA
† Instituto de Pesquisa Ambiental do Amazonas Campus do Guanã, UFPa Av. Augusto Corrêa S/N, Caixa Postal 8610, Belém, Pará, CEP 66075-970, Brazil
‡ Instituto de Homens e Meio Ambiente da Amazônia, IMAZON, Caixa Postal 1015, Belém, Pará, CEP 66017-000, Brazil
§ Instituto Nacional de Pesquisas Espaciais, Caixa Postal 515, São José dos Campos, SP, CEP 12201-970, Brazil
¶ Ecosystem Science and Technology Branch, NASA Ames Research Center, Mail Stop 242-4, Moffett Field, California 94110, USA
‖ Universidade Federal do Acre, Parque Zoológico, Rio Branco, Acre, CEP 69000, Brazil

Amazonian deforestation rates are used to determine human effects on the global carbon cycle5,6 and to measure Brazil’s progress in curbing forest impoverishment1,2,7. But this widely used measure of tropical land use tells only part of the story. Here we present field surveys of wood mills and forest burning across Brazilian Amazonia which show that logging crews severely damage 10,000 to 15,000 km² yr⁻¹ of forest that are not included in deforestation mapping programmes. Moreover, we find that surface fires burn additional large areas of standing forest, the destruction of which is normally not documented. Forest impoverishment due to such fires may increase dramatically when severe droughts provoke forest leaf-shedding and greater flammability; our regional water-balance model indicates that an estimated 270,000 km² of forest became vulnerable to fire in the 1998 dry season. Overall, we find that present estimates of annual deforestation for Brazilian Amazonia capture less than half of the forest area that is impoverished each year, and even less during years of severe drought. Both logging and fire increase forest vulnerability to future burning8,9 and release forest carbon stocks to the atmosphere, potentially doubling net carbon emissions from regional land-use during severe El Niño episodes. If this forest impoverishment is to be controlled, then logging activities need to be restricted or replaced with low-impact timber harvest techniques, and more effective strategies to prevent accidental forest fires need to be implemented.

Human uses of tropical forests vary greatly in their ecological impacts. Ranchers and farmers ‘deforest’ land in preparation for cattle pasture and crops by clear-cutting and burning patches of forest. Loggers do not clear-cut and burn, but perforate forests by harvesting or damaging many trees. Rubber tapping and similar activities use the forest at very low intensity through the harvest of animals, fruits, latex and other “non-timber products”10–12. Deforestation by ranchers and farmers has a greater effect on forest carbon content, forest hydrology, and the diversity of native plant and animal species than other forest uses9,12 and has become the main parameter by which human effects on tropical forests are measured. Part of the appeal of this forest versus non-forest approach to assessing human effects on tropical forests is its tractability. Forest conversion to agriculture is readily monitored from space using imagery from the Landsat Thematic Mapper (TM) satellites, permitting the development of deforestation maps of large regions at a reasonable cost and speed.4,5

This binary approach to the analysis of human effects on tropical forests neglects those forest alterations that reduce tree cover, but do not eliminate it, such as logging and surface fires in standing forests. The forest openings created by logging and accidental surface fires are visible in Landsat TM images, but they are covered over by regrowing vegetation within 1 to 5 years, and are easily misclassified in the absence of accompanying field data15. Although logging and forest surface fires usually do not kill all trees, they severely damage forests. Logging companies in Amazonia kill or damage 10–40% of the living biomass of forests through the harvest process9,10,16. Logging also increases forest flammability by reducing forest leaf canopy coverage by 14–50%16,17, allowing sunlight to penetrate to the forest floor, where it dries out the organic debris created by the logging. Fires ignited on agricultural lands can penetrate logged forests17,18, killing 10–80% of the living biomass17 and greatly increasing the vulnerability of these forests to future burning19. Fires from agricultural lands can also penetrate those undisturbed forests that have lost portions of their leaf canopies because of severe seasonal drought19.

We estimated the area of Brazilian Amazonian forest that is impoverished each year through logging by interviewing 1,393 wood mill operators, representing more than half of the mills located in 75 logging centres (Table 1); these logging centres are responsible for >90% of Amazonian timber production. In each interview, we obtained the mill’s harvest records of roundwood (tree trunks) for 1996 and 1997 and the harvest rate (m³ of timber per ha of forest), thereby calculating the forest area required to supply each centre’s timber production. The accuracy of the roundwood harvest rates reported by mill operators was tested by comparing these interview data with direct measurements of roundwood harvest in...